Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(9): 6693-6706, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36807663

RESUMO

The role of the oxidation state of cerium cations in a thin oxide film in the adsorption, geometry, and thermal stability of glycine molecules was studied. The experimental study was performed for a submonolayer molecular coverage deposited in vacuum on CeO2(111)/Cu(111) and Ce2O3(111)/Cu(111) films by photoelectron and soft X-ray absorption spectroscopies and supported by ab initio calculations for prediction of the adsorbate geometries, C 1s and N 1s core binding energies of glycine, and some possible products of the thermal decomposition. The molecules adsorbed on the oxide surfaces at 25 °C in the anionic form via the carboxylate oxygen atoms bound to cerium cations. A third bonding point through the amino group was observed for the glycine adlayers on CeO2. In the course of stepwise annealing of the molecular adlayers on CeO2 and Ce2O3, the surface chemistry and decomposition products were analyzed and found to relate to different reactivities of glycinate on Ce4+ and Ce3+ cations, observed as two dissociation channels via C-N and C-C bond scission, respectively. The oxidation state of cerium cations in the oxide was shown to be an important factor, which defines the properties, electronic structure, and thermal stability of the molecular adlayer.

2.
Acc Chem Res ; 55(23): 3285-3293, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472092

RESUMO

The gas-liquid interface of water is environmentally relevant due to the abundance of aqueous aerosol particles in the atmosphere. Aqueous aerosols often contain a significant fraction of organics. As aerosol particles are small, surface effects are substantial but not yet well understood. One starting point for studying the surface of aerosols is to investigate the surface of aqueous solutions. We review here studies of the surface composition of aqueous solutions using liquid-jet photoelectron spectroscopy in combination with theoretical simulations. Our focus is on model systems containing two functional groups, the carboxylic group and the amine group, which are both common in atmospheric organics. For alkanoic carboxylic acids and alkyl amines, we find that the surface propensity of such amphiphiles can be considered to be a balance between the hydrophilic interactions of the functional group and the hydrophobic interactions of the alkyl chain. For the same chain length, the neutral alkyl amine has a lower surface propensity than the neutral alkanoic carboxylic acid, whereas the surface propensity of the corresponding alkyl ammonium ion is higher than that of the alkanoic carboxylate ion. This different propensity leads to a pH-dependent surface composition which differs from the bulk, with the neutral forms having a much higher surface propensity than the charged ones. In aerosols, alkanoic carboxylic acids and alkyl amines are often found together. For such mixed systems, we find that the oppositely charged molecular ions form ion pairs at the surface. This cooperative behavior leads to a more organic-rich and hydrophobic surface than would be expected in a wide, environmentally relevant pH range. Amino acids contain a carboxylic and an amine group, and amino acids of biological origin are found in aerosols. Depending on the side group, we observe surface propensity ranging from surface-depleted to enriched by a factor of 10. Cysteine contains one more titratable group, which makes it exhibit more complex behavior, with some protonation states found only at the surface and not in the bulk. Moreover, the presence of molecular ions at the surface is seen to affect the distribution of inorganic ions. As the charge of the molecular ions changes with protonation, the effects on the inorganic ions also exhibit a pH dependence. Our results show that for these systems the surface composition differs from the bulk and changes with pH and that the results obtained for single-component solutions may be modified by ion-ion interactions in the case of mixed solutions.


Assuntos
Aminas , Ácidos Carboxílicos , Ácidos Carboxílicos/química , Aminas/química , Aminoácidos , Água/química , Aerossóis , Íons
3.
Phys Chem Chem Phys ; 24(42): 26037-26045, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36268753

RESUMO

Ethanol and water form an azeotropic mixture at an ethanol molecular percentage of ∼91% (∼96% by volume), which prohibits ethanol from being further purified via distillation. Aqueous solutions at different concentrations in ethanol have been studied both experimentally and theoretically. We performed cylindrical micro-jet photoelectron spectroscopy, excited by synchrotron radiation, 70 eV above C1s ionization threshold, providing optimal atomic-scale surface-probing. Large model systems have been employed to simulate, by molecular dynamics, slabs of the aqueous solutions and obtain an atomistic description of both bulk and surface regions. We show how the azeotropic behaviour results from an unexpected concentration-dependence of the surface composition. While ethanol strongly dominates the surface and water is almost completely depleted from the surface for most mixing ratios, the different intermolecular bonding patterns of the two components cause water to penetrate to the surface region at high ethanol concentrations. The addition of surface water increases its relative vapour pressure, giving rise to the azeotropic behaviour.

4.
Acc Chem Res ; 55(21): 3080-3087, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36251058

RESUMO

By combining results and analysis from cylindrical microjet photoelectron spectroscopy (cMJ-PES) and theoretical simulations, we unravel the microscopic properties of ethanol-water solutions with respect to structure and intermolecular bonding patterns following the full concentration scale from 0 to 100% ethanol content. In particular, we highlight the salient differences between bulk and surface. Like for the pure water and alcohol constituents, alcohol-water mixtures have attracted much interest in applications of X-ray spectroscopies owing to their potential of combining electronic and geometric structure probing. The water mixtures of the two simplest alcohols, methanol and ethanol, have generated particular attention due to their delicate hydrogen bonding networks that underlie their structural and thermodynamic properties. Macroscopically ethanol-water seems to mix very well, however microscopically this is not true. The aberrant thermodynamics of water-alcohol mixtures have been suggested to be caused by energy differences of hydrogen bonding between water-water, alcohol-alcohol and alcohol-water molecules. These networks may perturb the local character of the interaction between X-rays and matter, calling for analysis that go beyond the normally applied local selection and building block rules and that can combine the effects of light-matter, intra- and intermolecular interactions. However, despite decades of ongoing research there are still controversies of the precise nature of hydrogen bonding networks that underlie the mixing of these simple molecules. Our combined analysis indicates that at low concentration ethanol molecules form a film at the surface since ethanol at the surface can expose its hydrophobic part to the vacuum retaining its two (or three) possible hydrogen bonds, while water at the surface cannot retain all its four possible hydrogen bonds. Thus, ethanol at the surface becomes energetically favorable. Ethanol molecules show a tilting angle variation of the C-C axis with respect to the surface normal as large as 60° at very low concentration. In bulk, around ca. ten %, the ethanol oxygen atoms tend to make a third acceptor hydrogen bond to water molecules. At ca. 20 %, there is a U-shaped change in the CH3 to CH2OH binding energy (BE) shift indicating the presence of ring-like agglomerates called clathrate structures. At the surface, between 5 and 25%, ethanol forms a closely packed layer with the smallest C-C tilting angle variation down to ∼20°. Above 25% and below the azeotrope at the surface, ethanol shows an increase in the tilting angle variation, while at very high ethanol concentrations water tends to move to the surface so giving a microscopic explanation of the azeotrope effect. This migration is connected to the presence of longer (shorter) ethanol chains in the bulk (surface). A brief comparison with discussions and predictions from other spectroscopic techniques is also given. We emphasize the execution of an integrated approach that combines molecular structural dynamics with quantum predictions of the core electronic chemical shift, so establishing a protocol with considerable interpretative as well as predictive power for cMJ-PES measurements. We believe that this protocol can valorize cMJ-PES for studies of properties of other alcohol mixtures as well as of binary solutions in general.


Assuntos
Etanol , Água , Espectroscopia Fotoeletrônica , Etanol/química , Ligação de Hidrogênio , Água/química , Termodinâmica
5.
Phys Chem Chem Phys ; 24(11): 7164, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35260872

RESUMO

Correction for 'The molecular structure of the surface of water-ethanol mixtures' by Johannes Kirschner et al., Phys. Chem. Chem. Phys., 2021, 23, 11568-11578, DOI: 10.1039/D0CP06387H.

6.
Phys Chem Chem Phys ; 23(32): 17166-17176, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34346432

RESUMO

As an example of symmetry breaking in NEXAFS spectra of protonated species we present a high resolution NEXAFS spectrum of protonated dinitrogen, the diazynium ion N2H+. By ab initio calculations we show that the spectrum consists of a superposition of two nitrogen 1s absorption spectra, each including a π* band, and a nitrogen 1s to H+ charge transfer band followed by a weak irregular progression of high energy excitations. Calculations also show that, as an effect of symmetry breaking by protonation, the π* transitions are separated by 0.23 eV, only slightly exceeding the difference in the corresponding dark (symmetry forbidden) and bright (symmetry allowed) core excitations of neutral N2. By DFT and calculations and vibrational analysis, the complex π* excitation band of N2H+ is understood as due to the superposition of the significantly different vibrational progressions of excitations from terminal and central nitrogen atoms, both leading to bent final state geometries. We also show computationally that the electronic structure of the charge transfer excitation smoothly depends on the nitrogen-proton distance and that there is a clear extension of the spectra going from infinity to close nitrogen-proton distance where fine structures show some, although not fully detailed, similarities. An interesting feature of partial localization of the nitrogen core orbitals, with a strong, non-monotonous, variation with nitrogen-proton distance could be highlighted. Specific effects could be unraveled when comparing molecular cation NEXAFS spectra, as represented by recently recorded spectra of N2+ and CO+, and spectra of protonated molecules as represented here by the N2H+ ion. Both types containing rich physical effects not represented in NEXAFS of neutral molecules because of the positive charge, whereas protonation also breaks the symmetry. The effect of the protonation on dinitrogen can be separated in charge, which extends the high-energy part of the spectrum, and symmetry-breaking, which is most clearly seen in the low-energy π* transition.

7.
Phys Chem Chem Phys ; 23(19): 11568-11578, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33977931

RESUMO

Mixtures of water and alcohol exhibit an excess surface concentration of alcohol as a result of the amphiphilic nature of the alcohol molecule, which has important consequences for the physico-chemical properties of water-alcohol mixtures. Here we use a combination of intensity vibrational sum-frequency generation (VSFG) spectroscopy, heterodyne-detected VSFG (HD-VSFG), and core-level photoelectron spectroscopy (PES) to investigate the molecular properties of water-ethanol mixtures at the air-liquid interface. We find that increasing the ethanol concentration up to a molar fraction (MF) of 0.1 leads to a steep increase of the surface density of the ethanol molecules, and an increased ordering of the ethanol molecules at the surface. When the ethanol concentration is further increased, the surface density of ethanol remains more or less constant, while the orientation of the ethanol molecules becomes increasingly disordered. The used techniques of PES and VSFG provide complementary information on the density and orientation of ethanol molecules at the surface of water, thus providing new information on the molecular-scale properties of the surface of water-alcohol mixtures over a wide range of compositions. This information is invaluable in understanding the chemical and physical properties of water-alcohol mixtures.

8.
Phys Chem Chem Phys ; 22(28): 16215-16223, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32643725

RESUMO

We present and analyze high resolution near edge X-ray absorption fine structure (NEXAFS) spectra of CO+ at the carbon and oxygen K-edges. The spectra show a wealth of features that appear very differently at the two K-edges. The analysis of these features can be divided into three parts; (i) repopulation transition to the open shell orbital - here the C(1s) or O(1s) to 5σ transition, where the normal core hole state is reached from a different initial state and different interaction than in X-ray photoelectron spectroscopy; (ii) spin coupled split valence bands corresponding to C(1s) or O(1s) to π* transitions; (iii) remainder weak and long progressions towards the double ionization potentials containing a manifold of peaks. These parts, none of which has correspondence in NEXAFS spectra of neutral molecules, are dictated by the localization of the singly occupied 5σ orbital, adding a dimension of chemistry to the ionic NEXAFS technique.

9.
Front Chem ; 7: 151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001511

RESUMO

Tunability and selectivity of synchrotron radiation have been used to study the excitation and ionization of 2-nitroimidazole at the C, N, and O K-edges. The combination of a set of different measurements (X-ray photoelectron spectroscopy, near-edge photoabsorption spectroscopy, Resonant Auger electron spectroscopy, and mass spectrometry) and computational modeling have successfully disclosed local effects due to the chemical environment on both excitation/ionization and fragmentation of the molecule.

10.
J Phys Chem B ; 123(17): 3776-3785, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30964991

RESUMO

The distribution and protonation states of amino acids in water droplets are of considerable concern in studies on the formation of clouds in the atmosphere as well as in many biological contexts. In the present work we use the amino acid cysteine as a prototypical example and explore the protonation states of this molecule in aqueous solution, which are strongly affected by the acidity of the environment and also can show different distributions between surface and bulk. We use a combination of X-ray photoelectron chemical shift measurements, density functional theory calculations of the shifts, and reactive force field molecular dynamics simulations of the underlying structural dynamics. We explore how the photoelectron spectra distinctly reflect the different protonation states that are generated by variation of the solution acidity and how the distribution of these protonation states can differ between bulk and surface regions. At specific pH values, we find that the distribution of the cysteine species at the surface is quite different from that in bulk, in particular, for the appearance in the surface region of species which do not exist in bulk. Some ramifications of this finding are discussed.

11.
Phys Chem Chem Phys ; 21(10): 5435-5447, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30793143

RESUMO

The tendency of glycine to form polymer chains on a rutile(110) surface under wet/dry conditions (dry-wet cycles at high temperature) is studied through a conjunction of surface sensitive experimental techniques and sequential periodic multilevel calculations that mimics the experimental procedures with models of decreasing complexity and increasing accuracy. X-ray photoemission spectroscopy (XPS) and thermal desorption spectroscopy (TDS) experimentally confirmed that the dry-wet cycles lead to Gly polymerization on the oxide support. This was supported by all the theoretical characterizations. First, classical reactive molecular dynamics (MD) simulations based on the ReaxFF approach were used to reproduce the adsorption of the experimental glycine solution droplets sprayed onto an oxide support and to identify the most probable arrangement of the molecules that triggered the polymerization mechanisms. Then, quantum chemistry density functional tight binding (DF-TB) MDs and static density functional theory (DFT) calculations were carried out to further explore favorable configurations and to evaluate the energy barriers of the most promising reaction pathways for the peptide bond-formation reactions. The results confirmed the fundamental role played by the substrate to thermodynamically and kinetically favor the process and disclosed its main function as an immobilizing agent: the molecules accommodated in the surface channels close to each other were the ones starting the key events of the dimerization process and the most favorable mechanism was the one where a water molecule acted as a proton exchange mediator in the condensation process.


Assuntos
Glicina , Prebióticos , Titânio , Catálise , Glicina/química , Simulação de Dinâmica Molecular , Oxirredução , Polimerização , Titânio/química , Água/química
12.
J Chem Theory Comput ; 15(3): 2010-2021, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30730740

RESUMO

The very first stages of nucleation and growth of ZnO nanoparticles in a plasma reactor are studied by means of a multiscale computational paradigm where the DFT-GGA approach is used to evaluate structure and electronic energy of small (ZnO) N clusters ( N ≤ 24) that are employed as a training set (TS) for the optimization of a Reactive Force Field (ReaxFF). Reactive Molecular Dynamics (RMD) simulations based on this tuned ReaxFF are carried out to reproduce nucleation and growth in a realistic environment. Inside the reaction chamber the temperature is around 1200 K, and the zinc atoms are oxidized in an oxygen-rich atmosphere at high pressure (about 20 atm), whereas in the quenching chamber where the temperature is lower (about 800 K) the ZnO embryo-nanoclusters are grown. The main processes ruling gas-phase nucleation and growth of ZnO nanoclusters are identified and discussed together with the dependence of the inception time and average stoichiometry of nanoclusters of different size on the composition of precursor material and physical parameters.

13.
J Phys Chem Lett ; 9(3): 521-526, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29314844

RESUMO

We have performed core level photoemission spectroscopy of gaseous acetylacetone, its fully deuterated form, and two derivatives, benzoylacetone and dibenzoylmethane. These molecules show intramolecular hydrogen bonds, with a proton located in a double-well potential, whose barrier height is different for the three compounds. This has allowed us to examine the effect of the double-well potential on photoemission spectra. Two distinct O 1s core hole peaks are observed, previously assigned to two chemical states of oxygen. We provide an alternative assignment of the double-peak structure of O 1s spectra by taking full account of the extended nature of the wave function associated with the nuclear motion of the proton, the shape of the ground and final state potentials in which the proton is located, and the nonzero temperature of the samples. The peaks are explained in terms of an unusual Franck-Condon factor distribution.

14.
Phys Chem Chem Phys ; 20(3): 1707-1715, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29265136

RESUMO

Melting and sintering of silicon nanoparticles are investigated by means of classical molecular dynamics simulations to disclose the dependence of modelling on the system type, the simulation procedure and interaction potential. The capability of our parametrization of a reactive force field ReaxFF to describe such processes is assessed through a comparison with formally simpler Stillinger-Weber and Tersoff potentials, which are frequently used for simulating silicon-based materials. A substantial dependence of both the predicted melting point and its variation as a function of the nanoparticle size on the simulation model is also highlighted. The outcomes of the molecular dynamics simulations suggest that the trend of the nanoparticulate sintering/coalescence time vs. temperature could provide a valid tool to determine the melting points of nanoparticles theoretically/experimentally.

15.
J Chem Theory Comput ; 13(8): 3854-3861, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28640604

RESUMO

A novel computational approach, based on classical reactive molecular dynamics simulations (RMD) and quantum chemistry (QC) global energy optimizations, is proposed for modeling large Si nanoparticles. The force field parameters, which can describe bond breaking and formation, are derived by reproducing energetic and structural properties of a set of Si clusters increasing in size. These reference models are obtained through a new protocol based on a joint high temperature RMD/low temperature Basin Hopping QC search. The different procedures of estimating optimal force field parameters and their performance are discussed in detail.

16.
Small ; 12(44): 6134-6143, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27671233

RESUMO

The adsorption and dynamics of cystine, which is the oxidized dimer of cysteine where the monomers are connected through a disulfide bond, on the Au(110) surface, in water solution, is characterized by means of classical molecular dynamics simulations based on a recently developed reactive force field (ReaxFF). The adopted computational procedure and the force field description are able to give a complete and reliable picture, in line with experiments, of the molecule behavior in solution and in close contact with the metal support. Many different aspects, which have never been explored computationally at this level of theory, are disclosed, namely, physisorption, chemisorption, disulfide bridge breaking/creation, and formation of staples. It is demonstrated that all these events are connected with the specific orientation and location of cystine on the substrate. Simulations in pure water reveal that the disulfide bridge is stable, whereas dissociation is observed on gold. This is favored at low coverage, whereas at high coverage both intact and dissociated forms can be observed depending on local arrangements. The computed photoemission spectra at different K-edges for the predicted adsorbate structures satisfactorily agree with the experimental measurements extracted from literature.


Assuntos
Cistina/química , Ouro/química , Modelos Teóricos , Água/química , Adsorção , Dissulfetos/química , Hidrogênio/química , Simulação de Dinâmica Molecular , Espectroscopia Fotoeletrônica , Soluções , Eletricidade Estática
17.
Nanoscale ; 8(26): 12929-38, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27305447

RESUMO

The dynamics of gold nanoparticle functionalization by means of adsorption of cysteine molecules in water solution is simulated through classical reactive molecular dynamics simulations based on an accurately parametrized force field. The adsorption modes of the molecules are characterized in detail disclosing the nature of the cysteine-gold interactions and the stability of the final material. The simulation results agree satisfactorily with recent experimental and theoretical data and confirm previous findings for a similar system. The covalent attachments of the molecules to the gold support are all slow physisorptions followed by fast chemisorptions. However, a great variety of binding arrangements can be observed. Interactions with the adsorbate caused surface modulations in terms of adatoms and dislocations which contributed to strengthen the cysteine adsorption.

18.
J Chem Theory Comput ; 12(7): 3325-39, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27224666

RESUMO

Motivated by the growing importance of organometallic nanostructured materials and nanoparticles as microscopic devices for diagnostic and sensing applications, and by the recent considerable development in the simulation of such materials, we here choose a prototype system - para-nitroaniline (pNA) on gold nanoparticles - to demonstrate effective strategies for designing metal nanoparticles with organic conjugates from fundamental principles. We investigated the motion, adsorption mode, and physical chemistry properties of gold-pNA particles, increasing in size, through classical molecular dynamics (MD) simulations in connection with quantum chemistry (QC) calculations. We apply the quantum mechanics-capacitance molecular mechanics method [Z. Rinkevicius et al. J. Chem. Theory Comput. 2014, 10, 989] for calculations of the properties of the conjugate nanoparticles, where time dependent density functional theory is used for the QM part and a capacitance-polarizability parametrization of the MM part, where induced dipoles and charges by metallic charge transfer are considered. Dispersion and short-range repulsion forces are included as well. The scheme is applied to one- and two-photon absorption of gold-pNA clusters increasing in size toward the nanometer scale. Charge imaging of the surface introduces red-shifts both because of altered excitation energy dependence and variation of the relative intensity of the inherent states making up for the total band profile. For the smaller nanoparticles the difference in the crystal facets are important for the spectral outcome which is also influenced by the surrounding MM environment.

19.
J Phys Chem Lett ; 7(2): 272-6, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26731127

RESUMO

The anchoring mechanism of cysteine to gold in water solution is characterized in detail by means of a combination of quantum chemistry (QC) and reactive classical molecular dynamics (RC-MD) calculations. A possible adsorption-reaction route is proposed, through RC-MD simulations based on a modified version of the protein reactive force field (ReaxFF), in which gold-protein interactions have been included after accurate parametrization at the QC level. The computational results confirm recent experimental findings regarding the mechanism as a two-step binding, namely, a slow physisorption followed by a fast chemisorption. The reaction barriers are estimated through the nudged elastic band approach and checked by QC calculations. Surface reconstructions, induced by the strong adsorption of the molecule, are identified, and their role, as further adsorbate stabilizers, is properly disclosed. The satisfactory agreement with QC data and experiments confirm the reliability of the simulations and the unique opportunity they provide to follow locally molecule adsorption on selected materials.


Assuntos
Cisteína/química , Ouro/química , Adsorção , Modelos Químicos , Simulação de Dinâmica Molecular , Água/química
20.
Phys Chem Chem Phys ; 18(3): 2210-8, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26691541

RESUMO

Experimental Near-Edge X-ray Absorption Fine-Structure (NEXAFS) spectra of N-methyltrifluoroacetamide (FNMA), which is a peptide model system, measured at the C, N, O and F K-edges are reported. The features in the spectra have been assigned by Static-Exchange (STEX) calculations. Using the same method, we have also assigned previously measured NEXAFS spectra of another peptide model system, N-methylacetamide (NMA). To facilitate the NEXAFS feature assignments, X-ray Photoelectron Spectroscopy (XPS) measurements for NMA and FNMA have been carried out with the aim of obtaining the 1s electron ionization potentials, which are compared with the values predicted by our Hartree-Fock (ΔHF) and Multi Configuration Self Consistent Field (ΔMCSCF) calculations. We also demonstrate an approach to compensate for screening effects that are neglected in the STEX method. Ion yield measurements of FNMA associated with the excitation of several C, N, O, and F K-shell pre-edge resonances have revealed site-specific fragmentation in some cases which we interpret with the aid of our theoretical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...